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June 2, 2009 
 
Econ 4240, ordinary exam, May 2009 
 
Annotated solution ("sensorveiledning") 
 
 
Problem 1 
 
Many exams start with questions of this type.  They should be fairly easy, in particular, 
because many of them have been given earlier, and the students have had the opportunity 
to look at the questions before. 
 
(a) True. 

A strategy which is part of a Nash equilibrium, cannot be strictly dominated.  
Hence it will never be eliminated during the process of iterated elimination of 
strictly dominated strategies, and it is rationalizable.  If there were more than one 
Nash equilibrium, therefore, there must be more than one rationalizable strategy 
for at least one player. 

 
(a) False.  Counterexample: 
 

 X Y Z 
A 2,2 0,0 0,0 
B 0,0 1,-1 -1,1 
C 0,0 -1,1 1,-1 

 
There is a unique Nash equilibrium, (A,X).  No strategy is strictly dominated.  
Hence all strategies are rationalizable. 

 
(c) False. 

There always exists a subgame perfect Nash equilibrium, which can be found by 
backward induction.  It need not be unique, however, since there can exist nodes 
at which the player is indifferent between two or more actions. 

 
(d) False. 

A Nash equilibrium can depend on a non-credible promise or threat and therefore 
not be subgame perfect. 
 Example involving a threat:  Let player 1 choose between A and B.  If A is 
chosen, the game ends with payoffs (1,4).  If B is chosen, player 2 chooses 
between X and Y.  B followed by X gives payoffs (0,2), B followed by Y gives 
payoffs (2,3),  The normal form is: 

 
 X Y 
A 1,4 1,4 
B 0,2 2,3 
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Backward induction gives (B,Y).  Both (A,X) and (B,Y) are Nash equilibria.  X is 
not optimal in the subgame, and (A,X) is not subgame perfect.  Implicitly, (A,X) 
amounts to player 2 making the following threat:  "You better choose A; 
otherwise, I shall punish you by choosing X." 

 
 
Problem 2 
 
For given a and s2, u1 is a strictly concave function of s1.  Hence there is a unique value 
of s1 that maximizes u1; either an internal solution with 1 0s >  and 1 1/ 0u s∂ ∂ =  or a 
corner solution with 1 0s =  and 1 1/ 0u s∂ ∂ ≤ .  Since 1 1 2 1/ 2 2 2u s as s∂ ∂ = + − , the best 
response-function for player 1 is given by: 
 ( ) ( )1 2 2max 1 ,0B s as= +  
Everything is symmetric, and the best response-function for player 2 is: 
 ( ) ( )2 1 1max 1 ,0B s as= +  

An equilibrium ( )* *
1 2,s s  is characterized by ( )* *

1 2 1B s s= and ( )* *
2 1 2B s s= . 

 We can draw the best-response functions in a ( )1 2,s s -diagram. 
 We see that the functions do not cross in the positive quadrant when a ≥ 1.  Hence 
there is no equilibrium in this case.  From any point ( )1 2,s s , at least one of the players 
can do better by a unilaterally change of strategy.  In particular, if 1 2s s≤ , player 1 can 
gain by increasing s1; if 1 2s s≥ , player 2 can gain by increasing s2. 
 If a < 1, the functions cross in the positive quadrant.  There is a symmetric 
equilibrium, given by 

 * *
1 2

1
1

s s
a

= =
−

 

 [Digression:  For a = -1, ( ),1s s−  is an equilibrium for all 0 1s≤ ≤ .  This 
includes the symmetric equilibrium already mentioned.  For a < -1, (0,1) and (1,0) are 
equilibria, in addition to the symmetric equilibrium.] 
 
(a) The game has no equilibrium for a ≥ 1. 
 
(b) For a = 0, u1 does not depend on s2, and u2 does not depend on s1.  At the 

equilibrium * *
1 2 1s s= = , therefore, u1 and u2 achieve their maximal value in the 

whole plane, and the equilibrium is efficient.   
  For a ≠ 0, a < 1, the symmetric equilibrium found above is not efficient.  

For 0 < a <1, both players gain if *
1s  and *

2s  are increased by the same amount.  
For a < 0, both players gain if *

1s  and *
2s  are decreased by the some small and 

equal amount.  (The students were not asked about this.) 
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The problems contain no reference to mixed strategies, and the students are not expected 
to bring up that issue.  If player 2 chooses a mixed strategy with expected value s2, the 
unique best response for player 1 is ( )1 2B s  as given above.  Hence the best response is 
always unique, and no equilibrium can contain a mixed strategy.  
 
 
Problem 3 
 
The pure-strategy equilibria are of course (O,F) and (F,O).  The mixed-strategy 

equilibrium is given by 5
7

p = , making player 2 indifferent between O and F, and 2
7

q = , 

making player 1 indifferent between O and F. 
 The mixed-strategy equilibrium is essentially symmetric, and in that sense it is 
more appealing than the pure-strategy equilibria, since the latter are asymmetric, and 
there is no basis for choosing one of them rather than the other.  On the other hand, the 
mixed-strategy equilibrium relies on each player choosing a carefully chosen mix of O 
and F, in spite of being indifferent between them.  Therefore, the concept of mixed-
strategy equilibrium is rather tenuous. 
 Good students should mention both those considerations, which point in opposite 
directions. 
 
 
Problem 4 
 
As long as the principal and the agent cooperate, they receive a net payoff per period of 
q t k− −  and ( )t c q− , respectively. 
 The use of trigger strategies implies that as soon as one of the parties has failed to 
cooperate in one period, there will be no cooperation thereafter.  This applies even if the 
court enforces the contract.  (It must be perfectly acceptable if a student makes a different 
assumption here.) 
 If the principal fails to cooperate by not paying t. there is nevertheless a 
probability v that the principal will be sentenced by the court to pay t.  The one-period 
benefit from not cooperating, will therefore be ( )1 v t− , while the everlasting loss – 
staring one period later – is q t k− − .  That is, deviating from cooperation is not 
advantageous if 

 ( ) ( )1
1

v t q t kδ
δ

− ≤ − −
−

 

The corresponding inequality for the agent is 

 ( ) ( ) ( )( )1
1

v c q t c qδ
δ

− ≤ −
−

 

If both these inequalities are satisfied, cooperation is a subgame perfect equilibrium.  The 
higher the value of v, that is, the better the court is able to enforce the contract, the better 
are the prospects for this being the case. 
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Problem 5 
 
The problem follows quite closely the theory presented in Laffont & Martimort Chapter 4, 
Sections 1 – 3. 
 
(a) The agent's expected utility of doing the job must be at least as high as the utility 

the agent can achieve by seeking alternative employment.  If the latter is 
normalized to 0 and the transfer in case of a good and a bad outcome are denoted 
t  and t , respectively, the participation constraint for high effort is 

( ) ( ) ( )1 11u t u tπ π ψ+ − ≥  
 Cf. L&M eq. (4.4). 
 
(b) The left-hand side is the expected added value of the agent exerting high effort 

rather than low.  The right-hand side is the monetary compensation needed to 
make the agent indifferent between exerting high effort and receiving the 
compensation, and exerting low effort without the compensation.  Hence this is 
the criterion for high effort being socially optimal. 

 
(c) The transfer should be independent of the outcome.  The agent will choose e = 0.  

The participation constraint is then u(t) ≥ 0 (when the reservation utility is 
normalized to 0). 

 
(d) High effort is socially optimal and can be induced by making t t−  sufficiently 

large.  The level of t  and t  can be adjusted so that the participation constraint in 
(a) holds with equality.  The result is socially optimal and the principal receives 
the whole surplus. 

  Since the agent is risk neutral, the utility function u is linear, and there is 
no loss of generality in assuming that it is the identity function.  (An adjustment 
of u must be matched by an adjustment of ψ.)  The transfers t  and t  must satisfy 
  ( )( )1 0t t π π ψ− − ≥ , 
 For example, t  and t  can be chosen so that the agent takes the whole risk 
of the outcome being good or bad.  That is, the agent receives the value of the 
output minus a constant. 
 The problem is that t  may be negative.  It may be legally (institutionally, 
normatively) difficult to implement a negative transfer. 

 
(e) The participation constraint of (a) must be satisfied, and t t−  must be 

sufficiently high to induce high effort.  The latter condition is called the moral 
hazard incentive constraint and looks like this 
  ( ) ( )( )( )1 0u t u t π π ψ− − ≥ . 

 Cf. L&M eq. (4.3). 
 It is optimal for the principal to let both these conditions hold with 
equality.  If the participation constraint is satisfied with strict inequality, both t  
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and t  can be reduced, keeping ( ) ( )u t u t−  unchanged.  This is obviously 
advantageous for the principal.  If the moral hazard incentive constraint is not 
satisfied with equality, unnecessary risk is imposed on the risk-averse agent.  The 
risk-neutral principal can gain in expected value by “insuring” the agent against 
this unnecessary risk, by reducing t  and increasing t , keeping the left-hand side 
of the participation constraint unchanged. 
 The principal will not always offer such a contract.  Even if the condition 
of (b) is satisfied, the principal’s expected profit under the contract described here, 
may be smaller than the expected profit of the fixed-wage contract of (c). 

 
(f) If high effort shall be induced, risk must necessarily be imposed on the risk-averse 

agent, and this is a social loss. 
 If high effort is not induced, a potential gain is lost, the expected value of 
which exceeds the cost to the agent of exerting high effort. 

 


